Updated:

less than 1 minute read

Derivatives of $||\mathbf{WH} - \mathbf{X}||_F^2 = ||\mathbf{X} - \mathbf{WH}||_F^2$ can be expressed as:

\[\begin{align} \label{eq:deriv1} &\nabla_{W}||\mathbf{WH} - \mathbf{X}||_F^2 = 2\mathbf{WHH}^T - 2 \mathbf{XH}^T \\[1.2em] &\nabla_{H}||\mathbf{WH} - \mathbf{X}||_F^2 = 2\mathbf{W}^T\mathbf{WH} - 2 \mathbf{W}^T\mathbf{X} \\[1.2em] &\nabla_{X}||\mathbf{WH} - \mathbf{X}||_F^2 = 2\mathbf{X} - 2\mathbf{WH} \end{align}\]

And derivatives of $||\mathbf{MW}||_F^2$ can be expressed as:

\[\begin{align} \label{eq:deriv2} &\nabla_{W}||\mathbf{MW}||_F^2 = 2\mathbf{M}^T\mathbf{MW} \\[1.2em] &\nabla_{M}||\mathbf{MW}||_F^2 = 2\mathbf{MWW}^T \end{align}\]

Also

\(\begin{align} \label{eq:matrix_norm_eigen_values} &||\mathbf{A}||_F = \sqrt{\lambda_\textrm{max}(\mathbf{A}^\dagger\mathbf{A})} = \sigma_\textrm{max}(\mathbf{A}) \\[1.2em] &||\mathbf{A}^\dagger\mathbf{A}||_F = ||\mathbf{A}\mathbf{A}^\dagger||_F = ||\mathbf{A}||_F^2 = \sigma_\textrm{max}(\mathbf{A})^2 = \lambda_\textrm{max}(\mathbf{A}^\dagger\mathbf{A}) \end{align}\) Where $\mathbf{A}^\dagger$ is the conjugate transpose of $\mathbf{A}$.

Categories:

Updated: